01.09.2025

Teaser image to AI for Personalized Psychiatry - with researcher Clara Vetter

AI for Personalized Psychiatry - With Researcher Clara Vetter

Research Film

Can AI help us understand why some people develop mental disorders while others remain resilient? Clara Vetter, PhD candidate at LMU and MCML, uses machine learning to uncover hidden patterns in brain scans, genetic data, and even smartphone-based information. Her goal: identifying biological markers that could improve diagnosis and treatment in psychiatry.

From predicting treatment responses to detecting early warning signs in mental health, Clara’s work shows how AI can enable more personalized psychiatric care. By integrating diverse data sources and collaborating with clinicians and computer scientists, her research bridges the gap between medicine and technology – giving psychiatrists better tools to make informed decisions.

This video is part of the project KI Trans, an initiative in collaboration with TüftelLab and Uta Hauck-Thum from Ludwig-Maximilians-Universität München, focused on equipping teachers with the essential skills to navigate AI in schools. The project is funded by the Bundesministerium für Forschung, Technologie und Raumfahrt as part of DATIpilot.

Watch in Full Quality on YouTube

 

#blog #research #rueckert
Subscribe to RSS News feed

Related

Link to Rethinking AI in Public Institutions - Balancing Prediction and Capacity

09.10.2025

Rethinking AI in Public Institutions - Balancing Prediction and Capacity

Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

Link to MCML-LAMARR Workshop at University of Bonn

08.10.2025

MCML-LAMARR Workshop at University of Bonn

MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.

Link to Three MCML Members Win Best Paper Award at AutoML 2025

08.10.2025

Three MCML Members Win Best Paper Award at AutoML 2025

Former MCML TBF Matthias Feurer and Director Bernd Bischl’s paper on overtuning won Best Paper at AutoML 2025, offering insights for robust HPO.

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Making Machine Learning More Accessible with AutoML

26.09.2025

Making Machine Learning More Accessible With AutoML

Matthias Feurer discusses AutoML, hyperparameter optimization, OpenML, and making machine learning more accessible and efficient for researchers.

Back to Top