01.09.2025
AI for Personalized Psychiatry - With Researcher Clara Vetter
Research Film
Can AI help us understand why some people develop mental disorders while others remain resilient? MCML Junior Member Clara Vetter, PhD candidate in the group of our Director Daniel Rückert, uses machine learning to uncover hidden patterns in brain scans, genetic data, and even smartphone-based information. Her goal: identifying biological markers that could improve diagnosis and treatment in psychiatry.
From predicting treatment responses to detecting early warning signs in mental health, Clara’s work shows how AI can enable more personalized psychiatric care. By integrating diverse data sources and collaborating with clinicians and computer scientists, her research bridges the gap between medicine and technology – giving psychiatrists better tools to make informed decisions.
This video is part of the project KI Trans, an initiative in collaboration with TüftelLab and Uta Hauck-Thum from Ludwig-Maximilians-Universität München, focused on equipping teachers with the essential skills to navigate AI in schools. The project is funded by the Bundesministerium für Forschung, Technologie und Raumfahrt as part of DATIpilot.
©MCML
Related
22.01.2026
From Global to Regional Explanations: Understanding Models More Locally
JMLR research shows how subgroup-specific explanations reveal hidden patterns that global model explanations often miss.
©MCML
22.01.2026
Research Stay at University of St. Gallen
Andrea Maldonado spent two weeks at HSG with the MCML AI X-Change Program, researching ambiguity in IoT-based process mining.
20.01.2026
MCML PI Matthias Nießner Featured in WirtschaftsWoche on Spaitial AI
MCML PI Matthias Nießner featured in WirtschaftsWoche for Spaitial AI, creating realistic 3D models of rooms and interiors in seconds.
19.01.2026
MCML at AAAI 2026
MCML researchers are represented with 11 papers at AAAI 2026 (8 Main, and 3 Workshops).