13.08.2025

From Physics Dreams to Algorithm Discovery - With Niki Kilbertus
Research Film
As a kid, Niki Kilbertus dreamed of becoming a theoretical physicist and discovering a fundamental law of nature. But when reality proved more complex, he found a new path through computer science.
Now a professor at TUM and PI at the Helmholtz Center as well as the MCML, Kilbertus works at the intersection of AI and causal inference. His mission: build algorithms that don’t just detect patterns, but help uncover cause and effect.
In medicine, for example, data might suggest a non-invasive kidney stone treatment works better. But if it’s mostly given to patients with smaller stones, that’s correlation, not causation. To truly compare treatments, randomized trials are needed—removing hidden biases and revealing real effects.
The research of Kilbertus helps close this gap. His algorithms support more reliable scientific decisions and accelerate discovery in fields like biology, chemistry, and healthcare.
What began as a quest for physical laws has become a drive to make science itself smarter.
©MCML
The film was produced and edited by Nicole Huminski and Nikolai Huber.
13.08.2025
Related

22.09.2025
Predicting Health With AI - With Researcher Simon Schallmoser
Simon Schallmoser uses AI to predict health risks, detect low blood sugar in drivers, and advance personalized, safer healthcare.

19.09.2025
MCML Researchers With 24 Papers at MICCAI 2025
28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2025). Daejeon, Republic of Korea, 23.09.2025 - 27.09.2025

15.09.2025
Robots Seeing in the Dark - With Researcher Yannick Burkhardt
Yannick Burkhardt erforscht Event-Kameras, die Robotern ermöglichen, blitzschnell zu reagieren und auch im Dunkeln zu sehen.

12.09.2025
MCML Researchers With Eight Papers at ECML-PKDD 2025
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database (ECML-PKDD 2025). Porto, Portugal, 15.09.2025 - 19.09.2025