23.07.2025

Teaser image to How Reliable Are Machine Learning Methods? With Anne-Laure Boulesteix and Milena Wünsch

How Reliable Are Machine Learning Methods? With Anne-Laure Boulesteix and Milena Wünsch

Research Film

Often a new machine learning method claims to outperform the last. Whether it’s in bioinformatics, finance, or image recognition, the message is the same: this algorithm is faster, more accurate, more powerful. But can we trust those claims?

«It’s not just about the algorithms. It’s about how we compare them—and what we choose to report or ignore.»


Milena Wünsch

MCML Junior Member

Beneath the surface of many benchmarking studies lies a quiet problem: subtle biases that skew comparisons and inflate performance. These issues often go unnoticed — but they can have real consequences, especially when such models are used to inform research or high-stakes decisions.

«It doesn’t matter whether the bias is deliberate or not. It still shapes how methods are judged and used.»


Anne-Laure Boulesteix

MCML PI

Anne-Laure Boulesteix, Professor of Biometry at LMU and MCML PI, and Milena Wünsch, PhD student at LMU and MCML, study how seemingly harmless methodological choices can lead to misleading results.

One common issue: when a method fails on a dataset, researchers may simply drop it from the analysis. While convenient, this can introduce bias and overstate performance.

Bias can also arise from less obvious sources — like spending more time tuning one method, being more familiar with a tool, or unconsciously interpreting results in its favor.

With so many studies promoting the “next best” algorithm, it’s hard to know which results to trust. Researchers may end up using a method that only looked good due to biased comparisons. Still, the researchers are hopeful. In recent years, the methodological machine learning community has made real progress — pushing for better standards, more transparency, and more careful benchmarking.

Watch in Full Quality on YouTube

The film was produced and edited by Nicole Huminski and Nikolai Huber.

 

#blog #research #boulesteix
Subscribe to RSS News feed

Related

Link to Rethinking AI in Public Institutions - Balancing Prediction and Capacity

09.10.2025

Rethinking AI in Public Institutions - Balancing Prediction and Capacity

Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

Link to MCML-LAMARR Workshop at University of Bonn

08.10.2025

MCML-LAMARR Workshop at University of Bonn

MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.

Link to Three MCML Members Win Best Paper Award at AutoML 2025

08.10.2025

Three MCML Members Win Best Paper Award at AutoML 2025

Former MCML TBF Matthias Feurer and Director Bernd Bischl’s paper on overtuning won Best Paper at AutoML 2025, offering insights for robust HPO.

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Making Machine Learning More Accessible with AutoML

26.09.2025

Making Machine Learning More Accessible With AutoML

Matthias Feurer discusses AutoML, hyperparameter optimization, OpenML, and making machine learning more accessible and efficient for researchers.

Back to Top