23.07.2025
How Reliable Are Machine Learning Methods? With Anne-Laure Boulesteix and Milena Wünsch
Research Film
Often a new machine learning method claims to outperform the last. Whether it’s in bioinformatics, finance, or image recognition, the message is the same: this algorithm is faster, more accurate, more powerful. But can we trust those claims?
«It’s not just about the algorithms. It’s about how we compare them—and what we choose to report or ignore.»
Milena Wünsch
MCML Junior Member
Beneath the surface of many benchmarking studies lies a quiet problem: subtle biases that skew comparisons and inflate performance. These issues often go unnoticed — but they can have real consequences, especially when such models are used to inform research or high-stakes decisions.
«It doesn’t matter whether the bias is deliberate or not. It still shapes how methods are judged and used.»
Anne-Laure Boulesteix
MCML PI
Anne-Laure Boulesteix, Professor of Biometry at LMU and MCML PI, and Milena Wünsch, PhD student at LMU and MCML, study how seemingly harmless methodological choices can lead to misleading results.
One common issue: when a method fails on a dataset, researchers may simply drop it from the analysis. While convenient, this can introduce bias and overstate performance.
Bias can also arise from less obvious sources — like spending more time tuning one method, being more familiar with a tool, or unconsciously interpreting results in its favor.
With so many studies promoting the “next best” algorithm, it’s hard to know which results to trust. Researchers may end up using a method that only looked good due to biased comparisons. Still, the researchers are hopeful. In recent years, the methodological machine learning community has made real progress — pushing for better standards, more transparency, and more careful benchmarking.
©MCML
The film was produced and edited by Nicole Huminski and Nikolai Huber.
#blog #research #boulesteix
Related
©MCML
24.11.2025
Research Stay at Stanford University
Kun Yuan spent two months at Stanford with the AI X-Change Program, advancing biomedical vision-language models and launching three joint projects.
20.11.2025
Zigzag Your Way to Faster, Smarter AI Image Generation
ZigMa, introduced by Björn Ommer’s group at ECCV 24, improves high-res AI image and video generation with fast, memory-efficient zigzag scanning.
13.11.2025
Anne-Laure Boulesteix Among the World’s Most Cited Researchers
MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.
13.11.2025
Björn Ommer Featured in Frankfurter Rundschau
Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.