21.03.2025
©aiforgood
Explainable Multimodal Agents With Symbolic Representations & Can AI Be Less Biased?
Ruotong Liao at United Nations AI for Good
More than 170 audiences visited the online lecture of our Junior Member Ruotong Liao, PhD student in the group of our PI Volker Tresp, on Monday, 17. March 2025, as an invited speaker at the United Nations "AI for Good".
With her talk "Perceive, Remember, and Predict: Explainable Multimodal Agents with Symbolic Representations," Ruotong Liao took part in the online event "Explainable Multimodal Agents with Symbolic Representations & Can AI be less biased?"
At the event, which was hosted by the leading platform for artificial intelligence for sustainable development, Ruotong Liao explained her research results, focussed on how the integration of temporal reasoning and symbolic knowledge about evolving events enables LLMs to make structured, interpretable, and context-sensitive predictions. Ruotong Liao presented work aimed at developing explainable multimodal agents capable of perceiving, storing, predicting, and justifying their conclusions over time.
See the whole presentation in the stream.
Related
05.02.2026
Needle in a Haystack: Finding Exact Moments in Long Videos
ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.
04.02.2026
Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”
Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.
©Florian Generotzky / LMU
30.01.2026
Cracks in the Foundations of Cosmology
Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.