Home  | Events
Teaser image to Fairness, Randomness, and the Crystal Ball

Munich AI Lectures

Fairness, Randomness, and the Crystal Ball

Cynthia Dwork, Harvard University

   04.05.2022

   5:00 pm - 6:30 pm

   Livestream on YouTube

Prediction algorithms score individuals, or individual instances, assigning to each one a number in the range from 0 to 1. That score is often interpreted as a probability: What are the chances that this loan will be repaid? How likely is this tumor to metastasize? A key question lingers: What is the “probability” of a non-repeatable event? This is the defining problem of AI. Without a satisfactory answer, how can we even specify what we want from an ideal algorithm?

This talk will introduce ‘outcome indistinguishability’ — a desideratum with roots in computational complexity theory. We will situate the concept within the 10-year history of the theory of algorithmic fairness, and spell out directions for future research.


Related

Link to How Machines Explore, Conjecture, and Discover Mathematics

Munich AI Lectures  •  12.02.2026  •  LMU Munich, Main Building, Room D209

How Machines Explore, Conjecture, and Discover Mathematics

Munich AI Lecture on Feb 12 features Sebastian Pokutta from Zuse Institute Berlin (ZIB).

Read more
Back to Top