08

Mar

Teaser image to Explainable AI via Semantic Information Pursuit

Munich AI Lectures

Explainable AI via Semantic Information Pursuit

René Vidal, John Hopkins University

   08.03.2023

   5:00 pm - 6:30 pm

   Livestream on YouTube

There is a significant interest in developing ML algorithms whose final predictions can be explained in terms understandable to a human. To address this challenge, we develop a method for constructing high performance ML algorithms which are explainable by design.


Related

Link to TBA

Colloquium  •  05.02.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Isabel Valera (Saarland University in Saarbrücken).


Link to TBA

Colloquium  •  29.01.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Sophie Langer (University of Twente).


Link to TBA

Colloquium  •  15.01.2025  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Sonja Greven (HU Berlin).


Link to TBA

Colloquium  •  11.12.2024  •  LMU Department of Statistics and via zoom

TBA

Colloquium at the LMU Department of Statistics with Stijn Vansteelandt (Ghent University).


Link to The Mathematical Universe behind Deep Neural Networks

Munich AI Lectures  •  25.11.2024  •  Große Aula der LMU Geschwister-Scholl-Platz 1, Room 120 80539 München

The Mathematical Universe behind Deep Neural Networks

Join us on Nov 25 for Prof. Helmut Bölcskei’s lecture on the mathematical foundations driving deep neural networks, hosted by Bavarian AI at LMU.