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Abstract

Gaussian processes (GPs) are widely used as surrogate models in Bayesian opti-
mization (BO). However, their predictive performance is highly sensitive to the
choice of hyperparameters, often leading to markedly different posterior predic-
tions. Hierarchical BO addresses this issue by marginalizing over hyperparameters
to produce an aggregated posterior, which is then evaluated using an acquisition
function (AF). Yet, this aggregation can obscure the disagreement among individual
GP posteriors, an informative source of uncertainty that could be exploited for
more robust decision-making. To overcome this limitation, we propose Imprecise
Acquisitions in Bayesian Optimization (IABO), which maintains a set of GP mod-
els and evaluates the AF separately under each one. This results in an imprecise,
set-valued AF whose spread naturally captures model disagreement. We investigate
two aggregation strategies applied at different stages: (i) acquisition-level aggre-
gation, where AF values are combined into a single scalar via an aggregated AF,
and (ii) decision-level aggregation, where each AF is optimized independently and
the resulting maximizers are compared using stochastic dominance criteria. Our
approach is applicable to arbitrary AFs, and experiments show that our decision-
level strategies are highly competitive, often outperforming standard BO baselines
across a range of benchmarks problems.

1 Introduction

Bayesian optimization (BO) is a widely used framework for optimizing expensive black-box func-
tions [18]. It has been successfully applied across diverse domains, including materials design [49],
drug discovery [36], agent design [14], and hyperparameter optimization [42, 11]. At its core, BO
employs a probabilistic surrogate model to approximate the unknown objective function. This surro-
gate model provides posterior mean and variance estimates, which are used by an acquisition function
(AF) to trade off exploration and exploitation. By maximizing the AF, BO selects the next evaluation
point, incorporates the new observation, and refits the surrogate model, repeating this cycle until the
evaluated budget is exhausted.

Gaussian processes (GPs) are the most commonly used surrogate models in BO [38], but their
performance is highly sensitive to the choice of hyperparameters [33, 23, 39]. While hyperparameters
are typically learned by maximizing the marginal likelihood, this procedure is often unstable and
subject to high variability [28]. A more robust alternative, hierarchical BO, adopts a fully Bayesian
treatment by sampling hyperparameters from a hyperprior and aggregating the corresponding GP
posteriors into a single, averaged posterior.
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Figure 1: Aggregation can occur at the model-level (standard hierarchical BO aggregates posterior
predictions [28]), at the acquisition-level, or at the decision-level: Left: Two GPs with distinct
hyperparameters are combined into a mixture posterior, which is evaluated under the AF and maxi-
mized, yielding x ~ 0 as the next candidate. Middle: The AF is evaluated under each GP separately,
forming a set-valued AF whose spread reflects model disagreement. This spread can be leveraged
(e.g., via u — Var) to obtain an uncertainty-aware AF, whose maximizer is x ~ 3.7. Right: Each AF
is optimized independently, producing two maximizers, x; and x3. Their AF values form a set from
which we select the candidate whose empirical cumulative distribution function (CDF) stochastically
dominates; if none dominates, we choose the one with the higher mean AF value, here x5.

However, such aggregation can obscure disagreement among models. Two GPs may fit the data
equally well, yet highlight different regions of uncertainty or potential optima. Averaging their
predictions smooths over these conflicting beliefs, often leading to overconfident posteriors that no
single model fully supports. In the context of BO, where the goal is to decide where to evaluate next,
this inter-model disagreement encodes valuable information about epistemic uncertainty.

Motivated by ideas from imprecise probability theory [4], we propose to retain this information [47]
by explicitly maintaining a set of GP models rather than collapsing them into one. Each GP posterior
is evaluated separately under the AF, yielding an imprecise, set-valued AF whose spread quantifies
model disagreement. Figure 1 illustrates this concept: instead of aggregating model predictions
early (as in hierarchical BO), we postpone aggregation to later stages. This can occur either at the
acquisition level, by combining AF values, or later at the decision level, where each AF is optimized
independently and the next candidate is chosen from the resulting maximizers.

Contributions. (1) We propose the imprecise BO framework IABO, which preserves model
disagreement by maintaining a set of plausible surrogate models rather than collapsing them into
a single aggregated one. Aggregation is deferred and can occur either (i) at the acquisition-level,
by combining AF values through an aggregated AF, or (ii) at the decision-level, by independently
maximizing each AF and selecting the next candidate from the resulting maximizers. (2) Our
framework is general and acquisition-function agnostic, seamlessly extending to standard choices
such as Expected Improvement and Upper Confidence Bound. (3) Empirically, we demonstrate that
deferring aggregation to later stages yields consistent performance gains across a range of benchmark
problems, highlighting the value of explicitly modeling inter-surrogate disagreement in BO.

2 Hierarchical Bayesian Optimization

We consider the problem of sequentially optimizing a black-box function f : X — R. We assume
homoscedastic noise, observing y; = f(x;) + & with & ~ N(0,02). Our goal is to identify the
global minimizer of f,i.e. x* = argmin, , f(x) while minimizing the number of evaluations In



sequential decision-making, we typically begin by specifying a prior over the unknown function,
which encodes our initial belief. At time step ¢, we have a dataset of observations D; = {(x;,v:)}_;
to fit a surrogate model such as a Gaussian process (GP). A GP is fully specified by a prior mean
function m(x) and a kernel k¢(x,x’), parameterized by hyperparameters 6 = {l, 0y, o}, where
I € R are lengthscales, o + € Ris the output scale, and o € R is the noise variance. The GP posterior
predictive mean and variance at a test point x at timestep ¢ can then be derived analytically [38].

(%) = m(x) + ke (%) " (K + %)~ (ye — m), ey

ko(x,x') = k(x,x') — k(%) T (K; + 20) "1k (), 2)

o} (%) = ki(x, %), 3)

where y: = [y1,...,w) ", me = [m(z1),...,m(x)] ", K¢ = [ko(zs,2;)]i; is the kernel matrix
over observed points, ¥; = diag(o?,...,02), and ky(x) = [kg(21,X), ..., ko(2,x)] T

Hierarchical Bayesian optimization [34, 42] offers a principled approach to estimating suitable
hyperparameters 6. In this setting, hyperparameters are drawn from a hyperprior 6 ~ P(6), and
the predictive posterior over the latent function at a test point x is obtained by marginalizing over
these hyperparameters: p(f(x) | D;) = [ p(f(x) | Dt,0) P(8 | D;) df. The resulting hierarchical
predictive posterior is a mlxture of Gaussmns [21], which is typically approximated by sampling
hyperparameters #) ~ P(6 | D,) and averaging the corresponding predictive posterior distributions:

p(f(x) | D) ~ & S0 p(f(x) | Dy, 09D).

M
Mmlx M Z /’(‘j Um1x % Z ( + MJ )) - ,u?nix(x), “4)

j=1

where 415 (x) and JJZ (x) are the predictive mean and variance of the j-th GP.

3 Related Work

Several works have proposed robust BO methods designed to reduce their sensitivity to GP hyperpa-
rameter settings. For instance, Berkenkamp et al. [10] adapt kernel hyperparameters iteratively during
optimization. Bogunovic and Krause [12] introduce the enlarged-confidence GP-UCB algorithm,
which augments the standard GP-UCB [43] with an additional exploration term. Wynne et al. [48]
study the impact of misspecified smoothness assumptions and likelihoods in GPs and provide strate-
gies for adjusting kernels and hyperparameters accordingly. More recently, Rodemann and Augustin
[39] proposed imprecise GPs as surrogate models to mitigate prior mean misspecification. However,
their approach is limited to constant means and does not account for uncertainty in kernel parameters.

Another line of work enhances robustness by maintaining multiple priors and selecting among them
during optimization. Pautrat et al. [35] choose the prior that maximizes the product of its likelihood
and AF value. Ziomek et al. [S0] focus on time-varying domains and assume a set of expert-defined
priors. They iteratively discard implausible ones and select at each step the prior whose posteriors
yields the highest UCB value. Adachi et al. [1] frame the aggregation through the lens of social
choice theory, treating each surrogate or AF as an agent with potentially biased preferences. Their
dual voting mechanism combines noisy public votes with accurate private votes to correct for social
influence and promote consensus among agents.

The methods most conceptually related to ours are ScoreBO and SAASBO. ScoreBO [23] defines an
AF based on the discrepancy between the hierarchical posterior predictive distribution and the current
posterior, averaging this measure over samples. SAASBO [17], in turn, samples hyperparameters from
a sparsity-inducing prior over lengthscales and averages the resulting expected improvement values.
Both approaches, therefore, perform aggregation at the acquisition-function level (cf. Figure 1), but
only through simple averaging. Consequently, they neglect potential disagreement among models,
since the variance of the AF values is not taken into account.



Table 1: Aggregated AFs with corresponding uncertainty preferences. Let E, := Eqco(x)[q] and
Var, := Var,co(x)[q] denote the expectation and variance over AF values at x, with A > 0.
Aggregated AF E,—AVar, E, E,+ AVar, minQ(z) medianQ(z) max Q(x)

Uncertainty preference averse neutral affine averse neutral affine

4 Imprecise Acquisitions

At the core of our framework, IABO, is the concept of imprecise AFs. Rather than relying on a single
AF from one GP or a mixture posterior, we consider a set of plausible AFs, each computed from
a different GP posterior. This captures both the risk inherent in a probabilistic model (e.g., a GP’s
predictive variance) and ambiguity, i.e., uncertainty about which model to trust [16]. Thus, proposing
candidate points in BO becomes a problem of decision-making under imprecise probabilities (IP) [46],
allowing us to leverage decades of research on decision criteria in this setting [9, 24, 2, 3, 25, 27, 45,
44, 22] tracing back to [16], see [44] for an overview. Formally, each hyperparameter sample (/)
produces a Gaussian process posterior p(f(x) | Dy, 0\)) := p(f)) with mean p4;, and variance
O'g(j). The AF evaluated under this posterior is o) 1= a(ugm , ag(j) ) Evaluating the AF across all
sampled hyperparameters {H(j ) } j]‘il produces a set of plausible AF values for every x. To decide on
the next candidate for evaluation, i.e., which set is "the best", we propose two aggregation strategies
operating at different levels, which can incorporate various risk preferences.

4.1 Acquisition-level aggregation

Definition 1 (Set of plausible acquisition values). Given the set of AFs {cy) };‘4:1 we define for
each candidate point x € X

Q(x) := {agn) (%), ..., a90n (%)} (5)

the set of plausible AF values at x under posterior hyperparameter uncertainty.

Given such a set, we aggregate information by transforming each set into a single scalar value.

Definition 2 (Aggregated acquisition function). Given a set of plausible acquisition values Q(x) at a
candidate point x € X, an aggregated acquisition function (AAF) is a mapping

p:Q(x) = p(Qx)) €R, (©)
which assigns a single real value to the set of plausible acquisition values of the given candidate.

We propose several variants in Table 1 that reflect different preferences: uncertainty-neutral,
uncertainty-affine, or uncertainty-averse. The first AAF, E, 4+ A Var,, is inspired by UCB. Here, E,
denotes the average AF value across models (risk), while Var, quantifies inter-model disagreement
(ambiguity). In particular, setting A = 0 recovers the SAASBO acquisition strategy [17] with UCB
as the AF. The min Q(z) criterion corresponds to the I'-maximin criterion [41], representing a
worst-case, uncertainty-averse strategy: it assumes the prior producing the lowest acquisition value is
most suitable.

Lemma 3 (Robust max—min dominance). Ler {6}, denote the set of hyperparameters with

corresponding GPs and Q(x) = {aga)(x),...,agw) (x)} the set of plausible AF values at a
candidate x as defined above. Define the robust (max—min) choice as

Xrobust = argmax min ap()(X) = argmax min gq.
robus sl j=t,.m Y (x) sl qeg(x)q

Then, for any ' € X,

[ minage) (x') < (i a9 (Xrobust)- (7
Proof. Define the worst-case acquisition value y(x) := minj—1, . @) (x). By definition of
Xrobusts
7(@robust) = max y(z).
Hence, for any x’ € X, y(z') < v(Zrobust ), Which directly implies (7). O



This lemma formalizes that the robust (max—min) selection guarantees a worst-case acquisition value
that is at least as high as that of any other candidate, including the point obtained by maximizing the
acquisition function under the aggregated posterior (as in standard hierarchical Bayesian optimization).
Intuitively, hierarchical BO optimizes the expected acquisition value under the hyperparameter
distribution p(#), while the robust formulation optimizes its worst-case value across all plausible
models. This ensures resilience to model misspecification, favoring solutions that remain reliable
even when some surrogate models poorly reflect the true data-generating process.

Conversely, max Q(x) implements an uncertainty-affine or optimistic approach, while the median
rule provides a risk-neutral alternative that is robust to outliers among the plausible AF values.
The AF-level procedure is detailed in Algorithm 1 in the appendix. To select the next candidate,
one can maximize the AAF using standard optimization methods, since the expectation—variance
mapping is fully continuous, whereas the min, max, and median mappings are piecewise-continuous.
However, all of these risk mappings reduce the full set of AF values to a single scalar, inevitably
compressing information that could otherwise inform more robust decision-making. One way to
retain this information is to postpone aggregation to a later stage, as follows.

4.2 Decision-level aggregation

Our second strategy first maximizes each AF independently, producing a set of candidate maximizers.
*

Definition 4 (Set of maximizers). Let X;

maximizers as

€ arg maxy ag()(X), then we define the set of AF

X" .= {arg maxagg)(x)};il = {x] jvil (8)
X

If the AF is interpreted as expected utility, the set X'* consists of points that maximize Walley’s
maximality criterion [46]: each point maximizes expected utility for at least! one probability measure
(here: one p(f\4))) from the ones under consideration (here: all {p(f))} j=1)- A simple strategy is
to select the candidate closest to the median of X', but this only considers the candidates’ positions
in the X domain, ignoring the AF values themselves. To incorporate this additional information, we
define a mapping that directly compares two sets of AF values when selecting among candidates.

Definition 5 (Dominance mapping). Given two sets of plausible AF values (5), Q(x}) and Q(x}),
corresponding to two candidate maximizers x;,x; € X*, a dominance mapping

e Qx7) x Qxg) = ¢(Q(x7), Qx})) € {0, 1}, ©

assigns a binary value that quantifies the relative dominance between these two sets. Specifically,
e(Q(x}), O(x})) = 1if x} is dominated by x}, and 0 otherwise.

Note that since X'* contains at most M candidates, we only need to compute the dominance mapping
for M x (M — 1) pairwise comparisons, far fewer than would be required over the full domain X'
While pairwise comparisons can be implemented in various ways, we primarily rely on first- and
second-order stochastic dominance criteria [20], which induce a partial order over random variables.
Here, the acquisition values obtained under different priors are interpreted as samples from a random
variable. To apply these criteria, we approximate the distribution of Q(x}) using its empirical

cumulative distribution function F}(q) = = Z;\il H{qgj ) < q}, where ql(j ) e Q(x*).

First-order stochastic dominance (FSD): Candidate x; first-order stochastically dominates xj; if

F, (q) < E, (¢) Vq € R, with strict inequality for at least one ¢. Since we want to maximize the AF,
x; dominates xj because it places more probability mass on higher AF values.

Second-order stochastic dominance (SSD): Candidate x; second-order stochastically dominates
xj if ffoo F’Z(t) dt < ffoo Fk(t) dt Vq € R, with strict inequality for at least one q. For each pair
of candidates, we first check for first-order stochastic dominance. If neither candidate exhibits FSD,
we evaluate second-order stochastic dominance. For each candidate, we count how many times it is
dominated by other candidates, under either FSD or SSD. The final selection rule is straightforward
and interpretable: we choose the candidate x; € A that is dominated the fewest times. This
procedure naturally favors candidates whose acquisition values are robustly high across the set of
plausible models, effectively balancing risk and ambiguity.

Tt may happen that x; = x}, for i # k. Hence, X’* contains at most A/ elements



Definition 6 (Dominance score). Given a set of maximizers X* = {x},...,x%} and a dominance
mapping ¢ as defined in 9, the overall dominance score of a candidate x; is defined as

=3 p(Q(x). Q). (10)

ki

The candidate with the lowest dominance score is then selected, i.e., the one dominated the fewest
times. In decision-theoretic terms, the set of undominated candldates {x : @(x}) = 0} is called
admissible [8]. If multiple candidates are tied, ties can be resolved using one of the following
strategies: (1) select randomly among them, (2) choose the candidate with the lowest empirical
mean, or (3) choose the candidate with the lowest empirical variance. The complete procedure for
decision-level aggregation is presented in Algorithm 2 in the appendix.

4.3 Refinement of plausible hyperparameter samples

The aggregated acquisition functions I'-maximin and max Q(z), discussed in Section 4.1, can be
overly pessimistic or overly optimistic, respectively. To mitigate this, Cattaneo [13] proposed an
attenuated approach known as the a-cut or soft revision [19, 5], which has since been applied in
classification and pseudolabeling contexts [40, 15, 30]. We adopt a similar strategy for selecting
plausible hyperparameters. The core idea is to retain only those samples whose marginal likelihood
(evidence) is sufficiently close to the best observed. Concretely, for each sampled 6(7), we compute
its marginal likelihood and normalize it relative to the maximum across all samples. We then retain
only those A1) whose relative likelihood exceeds a threshold ~:

p(D [ 69) > 5 maxp(D [ 6)). (11)

5 Extensions

Risk-averse objective. In portfolio optimization, investors seek to avoid outcomes below a minimal
acceptable threshold f,;,,, which are considered disproportionately undesirable. Following [32], we
employ a prospect-theory-inspired reward to formalize this risk-averse preference.

T
R’?Sk-averse Z |: fmln) 1{f(xt)2fmin} - A (fmin - f(Xt))B 1{f(xt)<fmin}:| ’

t=1

where «, 5 € (0, 1] control the curvature of gains and losses, and A > 1 represents loss aversion,
amplifying the penalty for outcomes below fiy.

Extending on Table 1, we propose the following AAF:

Risk-averse acquisition (averaged). To emphasize robustness to worst-case outcomes while
normalizing across models, we define a PT-inspired acquisition function by averaging over the set
of plausible acquisition values. Let Q(x) = {aya) (x), ..., agon (x)} and let fi,;, be the minimal
acceptable threshold. to write: that fmin has to be on the same scale as the q, so maybe some
normalization? The averaged risk-averse acquisition is

ris 1 a
a k(x) = M Z {(q - fmin) 1{q2fm;n} - A (fmin - Q)ﬁ 1{q<fmin}}7

qeQ(x)

where a, 8 € (0,1] control the curvature of gains and losses, and A > 1 amplifies penalties for
outcomes below fiin.

The next candidate is chosen as

Xnext = arg Max a“Sk(x).

xE



—¥ UCBQ - minQ - mux Var x median ¥ —— SAASBO  --- UCB (B=1)  ----- UCB (B=2)

Griewank 3D Rastrigin 4D Ackley 6D Hartmann 6D

o

0 20 40 60 80 0 25 50 75 100 0 50 100 0 50 100
Iteration Iteration Iteration Iteration

Figure 2: Log-regret averaged over 20 repetitions, using UCB as AF. Our approaches (UCB Q, min Q,
mu X, Var X, median &) use the full set of GPs. The shaded area represents one standard error.

Remarks.

» Averaging normalizes the acquisition across the number of models, ensuring scale consis-
tency.

* The extreme losses are still emphasized: outcomes below f,;, are amplified by A and the
curvature 3, enforcing robustness to worst-case scenarios.

* Setting & = # =1 and A\ = 1 recovers the standard robust max—min acquisition:

Xpext = argmax min gq.
X qeQ(x)

6 Experiments

We conduct an experimental study on several standard benchmark functions: Griewank (3D), Rastrigin
(4D), Ackley (6D), and Hartmann (6D). For clarity, we focus on two acquisition-level strategies:
E, + Var, (denoted UCB Q in the plots) and min Q(x) (min Q). We also present results for decision-
level strategies based on stochastic dominance: selecting the candidate with the highest mean (mu &)
or lowest variance (Var X)), as well as the median rule, which chooses the candidate closest to the
median maximizer (median X).

In Figure 2, we use UCB as the AF and compare against standard UCB (single GP with hyperparame-
ters learned via marginal likelihood maximization) with exploration parameters 1 and 2, as well as
SAASBO with UCB [17]. In Figure 3, we use EI as the AF and compare against standard EI (single
GP with hyperparameters learned via marginal likelihood maximization) and SAASBO with EI [17].
Additional experimental details, results for other methods and test functions, and analyses of the
a-cut are provided in Appendix A.

Overall, our decision-level strategies perform strongly. Particularly, the median X strategy combined
with EI consistently ranks among the top approaches across benchmarks, except for Griewank under
both AFs. Notably, for Rastrigin 4D and Ackley 6D, this combination substantially outperforms
all other methods. The acquisition-level strategy (UCB Q) is also highly competitive to SAASBO,
matching or surpassing it on Griewank 3D, Rastrigin 4D, and Ackley 6D with UCB as the AF.
Standard EI and UCB are generally outperformed by our approaches, except for Rastrigin (4D) under
EI. We note that decision-level strategies introduce additional computation overhead, as they require
optimizing M separate acquisition functions, but this cost is offset by the consistent performance
gains across benchmarks.

7 Conclusion and Future Work

We introduced the imprecise BO framework (IABO), which accounts for hyperparameter uncertainty
by maintaining a set of plausible GP models. By evaluating the AF under each posterior separately,
we obtain a set-valued AF whose spread naturally reflects model disagreement. We proposed
acquisition-level and decision-level strategies to guide candidate selection under different uncertainty
preferences. Empirical results on standard benchmark functions show that our methods, particularly
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Figure 3: Log-regret averaged over 20 repetitions, using EI as AF. Our approaches (UCB Q, min Q,
mu X, Var X, median &) use the full set of GPs. The shaded area represents one standard error.

the decision-level strategies, consistently outperform standard UCB and are competitive with or
superior to SAASBO across most tasks.

Several promising directions remain for future research. First, the framework could be extended to
more advanced AFs that, e.g., handle heteroscedastic noise such as RAHBO [31]. Second, alternative
decision criteria such as Levi’s E-admissibility [29, 26] could be explored to capture different aspects
of model uncertainty or accommodate user-specific risk preferences. Finally, investigating the
impact of different hyperpriors—including poorly chosen ones as considered in ScoreBO [23] and
implementing ScoreBO as an additional baseline could provide further insights into the robustness of
our approach.

Broader Impact This work advances robust and adaptive Bayesian optimization methods, with
potential applications in AutoML, materials science, and healthcare. As with any optimization tool,
care must be taken to avoid biased objectives or unintended outcomes in sensitive domains. Beyond
that, the authors foresee no significant societal or environmental risks.
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A Appendix

We provide pseudocode for IABO for the two aggregation variants, acquisition-level and decision-
level, in Algorithms 1 and 2, respectively.

Algorithm 1 IABO: acquisition-level Algorithm 2 TABO: decision-level
1: Require: AF «, uncertainty mapping p 1: Require: AF «, dominance mapping ¢
2: fort=0,...,T do 2: fort=0,...,7T do
3 forj=1,...,M do 3: forj=1,...,M do
4 69 ~ P(0 | D) 4: 0 ~ P(0 | D)
5: Compute ay(;) from p(f)) 5: Compute ag(;) from p(f))
6: end for 6: end for
7 Compute Q(x) forall x € X (5) 7: Compute X'* (8) and ¢ (9)
8: X¢ € argmax, ¢y p(Q(x)) (6) 8: Xy € argming, ¢ y. ®(x) (10)
9: Observe y; = f(x¢) + & 9: Observe y; = f(x¢) + &

10: Dyp1 =Dy U{(x¢,41)} 10 Dip1 =Dy U{(x¢,u1)}

11: end for 11: end for

12: Return: x* € arg mingep,. f(x) 12: Return: x* € arg minkep,. f(x)

All experiments were conducted using 2 CPU cores and 8 GiB of RAM. The HPC nodes utilized
for the computations are equipped with two AMD Milan 7763 processors and a total of 256 GiB
of main memory. The total computational time for the experiments, as tracked in the database, is
approximately 1.13 CPU years. We provide code here https://anonymous.4open.science/r/
imprecise_acquisitions-5E61/README.md.

We present additional results for the Branin (2D) and Rastrigin (8D) functions using EI and UCB in
Figures 4 and 5, respectively. For UCB, we also include results with the a-cut variant in Figure 6.

All surrogate models employ a Matérn 2.5 kernel. For our methods, we adopt the same hyperprior as
SAASBO to ensure a fair comparison. All experiments are implemented in BoTorch [6] (v0.14.0), a
widely used Python framework for Bayesian optimization.

Following the SAASBO setup, we use the default parameters for hyperparameter sampling: a warm-
up phase of 512 iterations, generation of 256 samples, and thinning by a factor of 16 due to sample
correlation, resulting in 16 GP models. Our methods likewise operate with 16 GPs.

We set the observation noise to a small value, af =1x1073, primarily to avoid numerical instabilities.
Each experiment is averaged over 20 random seeds (0—19), with optimization budgets of 88, 100,
and 134 for problem dimensions 3, 4, and 6, respectively, following the setup from CARP-S [7]. The
initial design consists of 20% of the optimization budget, generated using Sobol sequences.

With EI as the AF, our decision-level strategies, especially the median aggregation over X" performs
particularly well, as seen for the Rastrigin (4D, 8D), Ackley (6D), and Rosenbrock (4D) functions.
The AF-level approaches perform comparably to SAASBO, except for Branin 2D. This is like due to
the fact that SAASBO effectively corresponds to the mean of Q, hence differing only in the choice of
risk mapping. Standard EI is consistently outperformed by our methods, except on the Branin (2D)
and Rastrigin (4D) problems.

With UCB as the AF, the results show a somewhat different trend, a shown in Figure 6. The decision-
level approaches perform less favorably overall. The max Q strategy performs best on the Ackley
(6D) function, corresponding to a uncertainty-affine behavior.

In Figure 6, we show results for UCB with an a-cut at a = 0.05. Interestingly, the differences are
relatively minor, except that the min(Q) strategy leads to improvements for some functions, such
as Branin (2D) and Griewank (3D). One possible reason is that, with only 16 GPs, the o = 0.05
threshold filters out only a small number of models, limiting its overall effect.
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Figure 4: Log-regret averaged over 20 repetitions, using EI as AF. Our approaches (UCB Q, min Q,
mu X, Var X', median X') use the full set of GPs. The shaded area represents one standard error.
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Figure 5: Log-regret averaged over 20 repetitions, using UCB as AF. Our approaches (UCB Q,
min @, mu X, Var X, median X) use the full set of GPs. The shaded area represents one standard
error.
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Figure 6: Log-regret averaged over 20 repetitions, using UCB as AF. Our approaches (UCB Q, min Q,
max Q, median O, mu X, Var X', median X’) use the set of GPs after the «-cut from Section 4.3.
The shaded area represents one standard error.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state that the paper’s main contribution is
a new framework for using imprecise acquisition functions in Bayesian optimization, i.e.
decision-making under imprecise probabilities. The claims made are consistent with the
experimental results, and the paper does not overstate its contributions.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 7.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: In the Appendix A.
5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a link to an anonymized GitHub repository in Appendix A, which
includes the code, as well as detailed instructions on how to set up the Python environment
and execute the experiments.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In the Appendix A.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard errors are plotted.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Specified in the Appendix A.
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16.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research presented in this paper fully adheres to the NeurIPS Code of
Ethics. All experiments use publicly available, synthetic datasets, there are no human
subjects or sensitive personal data involved, and the methods and results are reported
transparently.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In Section 7.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Botorch is cited.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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