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Abstract. Process mining solutions include enhancing performance, con-
serving resources, and alleviating bottlenecks in organizational contexts.
However, as in other data mining fields, success hinges on data quality
and availability. Existing analyses for process mining solutions lack di-
verse and ample data for rigorous testing, hindering insights’ generaliza-
tion. To address this, we propose Generating Event Data with Intentional
features, a framework producing event data sets satisfying specific meta-
features. Considering the meta-feature space that defines feasible event
logs, we observe that existing real-world datasets describe only local ar-
eas within the overall space. Hence, our framework aims at providing
the capability to generate an event data benchmark, which covers un-
explored regions. Therefore, our approach leverages a discretization of
the meta-feature space to steer generated data towards regions, where
a combination of meta-features is not met yet by existing benchmark
datasets. Providing a comprehensive data pool enriches process mining
analyses, enables methods to capture a wider range of real-world sce-
narios, and improves evaluation quality. Moreover, it empowers analysts
to uncover correlations between meta-features and evaluation metrics,
enhancing explainability and solution effectiveness. Experiments demon-
strate GEDI’s ability to produce a benchmark of intentional event data
sets and robust analyses for process mining tasks.

Keywords: Data Generation · Benchmarking · Event Log Features ·
Hyperparameter Optimization

1 Introduction

In today’s digital age, data plays a pivotal role in organizational decision-
making. Information systems meticulously record business events, creating ex-
tensive event data (ED). Process Mining (PM) aims to enhance operational
processes through ED analysis, providing insights into performance, bottlenecks,
and improvement opportunities. [1]. However, the success of PM critically hinges
on ED quality, as highlighted by Andrews et al. [4]. High-quality ED may still
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not fully represent relevant business processes, as noted by Beerepoot et al.
[8], or may face GDPR. Beyond data quality, Weytjens et al. [36] highlight the
pervasive lack of ED standardization, citing issues like undocumented prepro-
cessing, reliance on non-public knowledge, and flawed training-test separation,
which hinder generalizable process mining solutions. This standardization gap
affects various PM tasks [11, 31], including process discovery (PD), and predic-
tive monitoring [36]. Additionally, [33] highlights the imperative need for process
diversity, but existing frameworks often struggle with small sample sizes, limit-
ing result robustness [22]. The scarcity of real ED and inherent lack of reference
models further complicate the analysis [23, 14], as available ED often fail to cap-
ture the full event log space due to their limited quantity and dubious quality.

Jouck et al. [23] advocate using artificial ED for empirical evaluation to
compare model quality and understand how ED characteristics affect method
efficiency. To enable meaningful comparisons of process mining solutions, the ED
used needs to be reproducible and encompass potential characteristics beyond
the current confines. The absence of standardization and diversity in bench-
mark data limits the reliability of process mining solutions and the validity of
our community’s research findings. Hence, we propose a framework for creating
reproducible and comprehensive benchmark ED, addressing the deficiencies of
randomly generated and scarce real-world ED. In our work, we focus on the
control-flow perspective of event logs. Nevertheless GEDI can be extended to
additional event attributes, such as resource or event payloads, among others.

Our proposed methodology combines established ED-level features, which
cover statistical and entropy aspects, to generate more comprehensive event
datasets, as shown in fig. 1. On the left, a coordinate grid fills the feature space
with potential combinations of feature values, as input for GEDI. ED Feature 1
and ED Feature 2 represent two characteristics, i.e., features of event datasets.
Using Bayesian optimization, we produce an event dataset (EDS) for each point
in the grid. Orange diamonds represent generated EDS with desired feature
values, while grey crosses represent unfeasible feature values, due to definition
constraints. E.g. the value for the minimum number of events for a process ex-
ecution cannot be larger than the maximum number of events for a process
execution of the same event log. For comparative evaluation purposes, on the
right side of fig. 1 we depict a collection of real ED, as blue circles, sourced from
publicly available databases in the feature space. By combining both sides, we
establish a novel comprehensive benchmark ED collection and compare descrip-
tors of real and generated EDS. This process enriches the space reproducibly,
covering a larger area than the current real ED, as depicted in the middle of
fig. 1. Our framework enables the creation of a comprehensive EDS collection,
which can be used for benchmarking new solutions and stressing algorithms in
corner cases. Using GEDI for benchmarks, we reach a deep understanding of
how feature sets relate to evaluation metrics, allowing the community to create
methods tailored for specific downstream tasks. By defining the scope of GEDI
benchmarks — including features, metrics, and candidates for a task — we can
find approaches that generally perform well or excel in specific areas, including
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Fig. 1: GEDI [ “dZ"Ed“aI] generates ED which enriches the current event log collec-
tion space in terms of multiple features.

multiple real-world scenarios. Additionally, GEDI can generate event data simi-
lar to real-world cases and comply with GDPR.

This paper addresses the challenge of obtaining high-quality ED for al-
gorithm evaluation and their limited representation in the event log space by
proposing two contributions: (1) A framework for intentional ED generation
leveraging event log features and optimization to intentionally populate a grid in
the feature space, and thus unexplored regions. (2) A properly standardized com-
prehensive benchmark ED for comparative algorithm evaluation. Consequently,
we offer the community reproducible unexplored ED. Our results assess the
benchmark ED’s quality by measuring the distance between desired and result-
ing features and demonstrate the application with PD algorithms. Additionally,
we map how ED features correlate with algorithm performance, shedding light
on current challenges that require attention.

2 Related Work

We provide a literature overview for generating event log data (cf. section 3.1).

Simulation-based. These approaches rely on stochasticity for modeling
a business process and/or event log generation. In [15], random processes are
modeled using a stochastic context-free grammar, with the user controlling pro-
cess complexity parameters such as the occurrence probability of well-known
process patterns used as productions. [13] extends this approach to produce
multi-perspective event logs and event streams with concept drifts. [14] pro-
poses a framework for event log generation tailored for downstream tasks like
process discovery, using guided simulation to incrementally generate traces from
an existing process model. [9] introduces a recovering framework to generate de-
terministic traces, which maximize the similarity between a recovered log and a
record that reflects the real occurrence of activities. [7] and [23] present event
log generators with various modules: E.g. Process modeling, stochastic sampling,
simulation, as well as user intervention. Several of these contributions [9, 13, 23,
15] use probability values, whereas our approach focuses on generating processes
with intentional, data-driven features via optimization. As opposed to [7, 9, 13,
14], GEDI requires neither an input log/model nor the discovery of stochas-
tic/process models to generate new ED with desired characteristics. In [23], the
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authors generate random process trees and simulate them into corresponding
event logs. Adjustable parameters offer some control over the resulting event
log via process model characteristics. Nevertheless, these parameters are limited
mostly to control-flow characteristics of process models, and thus indirectly to
inter-activities relations. Therefore, the link between selected parameters and
the resulting (meta-)features on an event log level is unclear. Similarly, GEDI
uses features that directly describe ED. Beyond that, GEDI extends features
impacts on the generated event log without a process model. GEDI’s novelty
lies in optimizing a data generator’s input parameters so that event data with
desired features will be generated.

Augmentation-based. In [24], the authors enhance next activity predic-
tion by iteratively adding random noise-based transformations to input ED,
rather than generating new datasets. [20] presents a framework that gener-
ates counterfactual sequences via evolutionary algorithms without requiring do-
main knowledge. The authors of [32] mine decisions from time series data using
features for decision-making, similar to our feature-based approach. Recently,
[19] proposed a privacy-preserving framework for multi-perspective process min-
ing through data generalization, maintaining dependencies, and ensuring k-
anonymity. Unlike [19, 24], GEDI does not require input event logs. Instead of
generalizing ED behavior or enriching ED with noise-based transformations,
GEDI comprehensively explores the (meta-)feature space. Similar to [20, 19, 32],
our approach focuses on fulfilling objectives, like producing desired feature val-
ues. While [20] targets one counterfactual scenario at a time and [19] ensures
k-anonymity and dependency preservation, GEDI can simultaneously optimize
multiple criteria constraints regarding the (meta-)features (see section 5.4). The
pre-assumption of separable effects, as in [32], is not necessary for GEDI but can
be investigated as constraints between features (see section 5.2).

Deep Learning-based. Recently, Deep Learning enhanced generative
models have been explored in the process mining domain. [16] combines data-
driven simulation with Deep Learning for process simulation model discovery,
to analyze what-if scenarios. In [18], the authors propose ProcessGAN, which
involves: (1) input and data pre-processing, (2) the GAN model for Business Pro-
cess Improvement, and (3) output and data post-processing. However, ample real
event logs are needed for the discriminator to distinguish between real and fake
samples. In our approach, we explore the feasible feature space without requiring
real event logs. Additionally, different than in GEDI, DL approaches like [16, 18]
use encoded features, which typically lack interpretability, as explained in [28].

In summary, as opposed to previous works, our approach, GEDI, uses inten-
tional ED-level features to interpretably describe an event log, avoiding reliance
on random processes or augmentation techniques. We explore the feasible feature
space and steer the data generation process towards specific feature combina-
tions via hyperparameter optimization, eliminating the need for a real event log
to train a model. GEDI provides the first link between ED generation and ED
characteristic features and can target multiple objectives simultaneously.
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3 Preliminaries

3.1 Event Logs

In PM, an event log L is an event data set that consists of multiple events
and describes the flow of a process. An event e is the smallest unit of an event
log. It describes a single execution of a step in a process and has at least three
components: Case identifier c(e) identifies the process instance an event belongs
to. An activity a(e) describes the class of an event. Lastly, the timestamp t(e)
of an event indicates the timing of this occurrence. Aggregatively, a trace T is
the collection of events with the same case id. We denote the number of traces
in an event log as |L|. And a variant υ(T ) is the sequence of activities in a
trace T and υ(L) the collection of variants in L, as in [1]. Event data (ED) is
characterized by its granularity, with the basic unit being an event. Aggregations
like traces, activities, and variants offer different granularity levels and insights
into process behavior. These varying levels complicate the use of traditional data
mining algorithms, which require numerical vectors as input. Thus, to apply
data mining and machine learning to event data, it needs to be mapped into a
numerical space.

3.2 Event Data Features

In many scenarios, features of input data are informative for stakeholders for
their decision-making, as through them they can interpret event data behavior.
To apply machine learning-enhanced models, it is common practice to translate
data into a numerical embedding space. In our work, we extract meta features
on event-log level, using FEEED [28], which includes statistical ratios, and com-
plexity measures based on graph entropy. The translation of ED to a vectorial
feature space is described as follows:

Definition 1 (Feature extraction). For an event log L, feature extraction
is a function fe that maps L to a feature space, i.e., fe : L → Rn where Rn is
an n-dimensional real vector space.

For this work, we focus on two types of ED-level features: Ratios, which are
known for their simplicity, as well as EPA-based features, which have also been
identified to correlate with the quality of discovered process models. [6]

Event-log ratios. Ratio-based features are simple statistical descriptors relat-
ing multiple counts of an event log to each other. Let υ(L) represent the variants
from an event log L, which are the sequences of activities in each trace (see sec-
tion 3.1). A common statistic is the ratio of the first k unique variants to the
total number of variants. Another feature is the ratio of variants to the number
of traces. Hence, we define:

rmcv =
|υ(L)@1|

|L|
(1) rt10v =

|υ(L)@10%|
|L|

(2) rvpnot =
|υ(L)|
|L|

(3)
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where |υ(L)@k|, |υ(L)@k%| denote the number of occurrences of the k top vari-
ants or top k percentage of the input data, respectively.

Extended Prefix Automaton (EPA) based features. The authors of [6]
offer various measures that exhaustively capture multiple perspectives, based on
graph entropy. An extended prefix automaton EPA = (S+, T, A,C, seq, root)
is defined by a extended set of states S+ = S ∪ {root}, a set of activities A and
transitions T ⊆ S+×A×S. A partitioning function C ∈ S+ → N0∪{⊥} assigns
each state to a partition, and a function seq ∈ S → p(E) maps each state to the
set of events with the same prefix. The root ∈ S+ state serves as the starting
point with an empty prefix. The variant entropy is defined as:

Ev = |S| ∗ log(|S|)−
max(C)∑

i=1

|{s ∈ S|C(s) = i}| · log(|{s ∈ S|C(s) = i}|) (4)

Sequence entropy is a measure that captures the frequency of events and their
prefixes, based on the count of events within a partition:

Es = |seq(S)| · log(|seq(S)|)−
max(C)∑

i=1

|seqi(S)| · log(|seqi(S)|), (5)

where seq(S) =
⋃

s∈S seq(s) and seqi(S) =
⋃

s∈S|C(s)=i seq(s). Furthermore, the
normalized variant entropy (enve) and normalized sequence entropy (ense) are
given by:

Ēv =
Ev

|S| · log(|S|)
(6) Ēs =

Es

|seq(S)| · log(|seq(S)|)
(7)

We can calculate sequence entropy by incorporating the concept of forgetting,
where older events contribute less to the entropy than newer ones. We use two
methods to determine the weight of an event e [34]:

wlin(e) = 1− tmax − t(e)

∆t
(8) wexp(e) = exp

(
−k

tmax − t(e)

∆t

)
(9)

where ∆t := tmax − tmin denotes a sequence’s temporal horizon, and k de-
fines a forgetting coefficient k > 0. The choice of weighting determines the type
of sequence entropy: normalized sequence entropy linear forgetting (enself) or
normalized sequence entropy exponential forgetting (enseef). For a detailed dis-
cussion on EPA-based features, see [6, 34].

3.3 Hyperparameter Optimization (HPO)

Using event log generators, we can guide the generation towards desired descrip-
tors, i.e., the produced event log implies features defined as optimization goals.
The hyperparameter optimization (HPO) problem is defined as [21]:
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Definition 2. Let Λ be the set of hyperparameter configurations of algorithm
A. Given λ ∈ Λ, the function l(·, ·) computes the loss of Aλ when applied to
a dataset D. The hyperparameter optimization problem is finding λ∗ ∈ Λ
that minimizes the loss function. Hence, we define:

λ∗ ∈ argmin
λ∈Λ

1

k

k∑
i=1

l(Aλ,D) (10)

In our framework, the algorithm A is an event log generation algorithm. Its
hyperparameters can be configured in a way to produce an event log with desired
characteristics. Finding the optimal configuration becomes the HPO problem.
There are several approaches for HPO in the literature such as grid and ran-
dom searches, evolutionary algorithms, and Bayesian optimization (BO), among
others [21]. For the scope of this paper, we chose BO due to its state-of-the-art
performance in many current applications [27].

BO employs a probabilistic model to understand the link between hyperpa-
rameter configurations and their outcomes, utilizing the exploration-exploitation
balance [21]. Exploration seeks areas of uncertainty in the objective function,
while exploitation targets areas expected to perform well [10]. BO iteratively
selects and evaluates promising hyperparameters, aiming to minimize objective
function evaluations for efficiency, especially when the function is expensive to
compute. It uses prior evidence to inform the posterior distribution over the
function space, characterizing aspects like potential maxima and smoothness
[10]. BO often uses Gaussian processes and excels in continuous spaces, suitable
for this paper’s context.

4 GEDI - Generating ED with Intentional Features

We argue that major characteristics of a given event log are captured by its
m (meta-)features F := {f1, . . . , fm}, ∀fi ∈ R. In our framework, we aim to
explore untapped regions. Therefore, let F□ be a bounded solution space w.r.t.
feature definitions with:

F□ := [f l
1, f

u
1 ]× . . .× [f l

m, fu
m], ∀fi ∈ F : fi ∈ R, (11)

where f l
i , f

u
i denotes the respective lower and upper bound of the i-th feature.

We use step size ηi ∈ N+ to scan the search space for the i-th feature, i.e. the
sampling rate is given as (fu

i − f l
i )/ηi.

Hence, we start by defining a grid space that is given by [f l
1, f

u
1 ] × . . . ×

[f l
m, fu

m] with their respective sampling rates. We introduce our data-generating
pipeline G : F□ → L̂ that enables the generation of new event logs L̂ whose
features are closely aligned to grid points defined in the bounded space F□. Our
pipeline is illustrated in Figure 2. Intuitively, our generating process G(gk) GEDI
minimizes the distance between the respective grid points gk ∈ F□ signifying
a query feature combination and fe(Aλ), where Aλ denotes an exchangeable
module for generating new event logs with hyperparameter configuration λ. In



8 A. Maldonado et al.

Fig. 2: GEDI generates event data for multiple objectives in a grid search space
using Event Data Generator and HPO to configure its parameters.

our framework, we employ the Tree Generator proposed by Jouck et al. [23].
The parameters λ of this generator module are optimized by BO (cf. eq. (10)).
GEDI’s optimization problem for a given feature combination defined by grid
point gk ∈ F□ is then given as:

G(gk) = min
λ∈Λ

d(fe(Aλ), gk)) (12)

The function d : Rn × Rn → R calculates the distance in feature space, where
in the following we use n = 7 features that we extract from the event logs and
which are described in Section 3. As distance metric we apply the Euclidean
distance d(p, q) = ∥p− q∥.

Figure 2 shows a multi-objective workflow for two features, ED Feature 1
and 2. We create a 2D search space, setting step size ηi, and bounds f l

i and
fu
i to define the grid of possible feature combinations. Using BO for each grid

target, HPO adjusts the generator’s parameters to match both feature objectives
until an optimum is found or a termination condition, like reaching a maximum
number of iterations, is met. The final iteration produces a new event log based
on the optimized feature values.

5 Evaluation

We aim to answer the following research questions:

◦ R1: How well does the generator produce ED with specific feature values?
◦ R2: How well does generated ED represent the ED space?
◦ R3: How well does generated ED align with real ED in a downstream task?

5.1 Setup

To evaluate, we benchmark representative event logs and compare real and gen-
erated data for similarity. Our code is available on GitHub4.
Hyperparameter Configuration. We generate ED using the Process Tree
4 https://doi.org/10.5281/zenodo.11416771
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Generator [23] with specified hyperparameter intervals: activities_{min, mode,
max}= [5, 20], {sequence, choice, parallel, loop, silent, lt_dependency}: [0.01,
1], num_traces: [10, 10001], {duplicate, or}: [0].
Features. For simplicity, we consider features with values between [0, 1], includ-
ing 4 EPA-based features [6] — enve, ense, enself, and enseef — and variant-
based indicators — rmcv, rvpnot, and rt10v — as introduced in section 3.
Datasets. Following [6], we utilize publicly available datasets5, comprising
BPIC12, BPIC13cp, BPIC13inc, BPIC15f(1-5), SEPSIS, RTFMP, BPIC20(a-e),
without any preprocessing. Additionally, we incorporate BPIC13op, BPIC14di_p,
BPIC14dc_p, BPIC14dia_p, BPIC16wm_p, BPIC16c_p, BPIC17, BPIC17ol
[17], and BPIC19, representing further BPI Challenges Challenges 5. ED marked
with “_p” have been converted from “.csv” files to “.xes” files. We also include
RWABOCSL [12] and HD [30].
Methods. For process discovery (PD) as a downstream task, we use Inductive
Miner Infrequent (IMF) [26], Heuristics Miner (HM) [35] and ILP Miner [37].
Evaluation Metrics. We assess PD methods with generated event logs, ex-
amining fitness, precision, F-score, size, and CFC, per [6]. Alignment-based fit-
ness/recall and precision scores, range from 0 to 1 [3, 2]. In BPMN6 process
models, size equals node count, CFC measures branching from split gateways
[29]. Lower size and CFC indicate better measures.

5.2 R1 - Feasibility

First, we examine the quality of GEDI w.r.t. the distances between a set of
features given by real-world ED, and by GEDI-generated event datasets using
grid targets (GenGrid). For that, we constructed a grid for each pairwise fea-
ture value combination. For each point in the grid, we generated a novel EDS,
intending to be as close to a given point as possible. Choosing k features out
of seven features available for objectives, we produce

(
7
k

)
· |p × q| EDS in total,

where 7 > k ∈ N; p, q ∈ R, and p, q denote the resolution in each feature dimen-
sion, i.e., the number of grid points being examined for a specific feature. For
simplicity and readability we focus our experiments p, q ∈ [0, 1], with 0.1 steps
and k ∈ {1, 2}.

Figure 3 depicts the distances between feature values from the generated
event logs to the real-world ones. The diagonal shows the range of values,
where GEDI produced ED with sensible distances for a single objective. Brighter
(darker) colors indicate lower (higher) average distances and, thus, better (worse)
results in meeting intended targets. We observed especially for enve only values
between [0.1, 0.6], which is sensible considering that avoiding OR operators has
a direct impact on the relative length of traces, and thus in the upper limit for
entropy over the variant per trace distribution. We observe similar restrictions
for several features in fig. 3. On the upper diagonal half of fig. 3, we show the av-
erage distances w.r.t. each pair of features. The explanation for deviating results

5 https://www.tf-pm.org/competitions-awards/bpi-challenge
6 bpmn.org
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Fig. 3: In the diagonal we show ranges with sensible distances; above the diagonal,
we show average distances; and below it, distances between targets and generated
event log feature values for each feature combination.

lies, on the one hand, in the restrictions of each feature standalone, as discussed
in the single objective experiments above, and in the relation between features.

Highly correlated features such as rmcv and rvpnot demonstrate, on aver-
age, lower feasibility for intentional ED generation. The bottom diagonal half of
fig. 3 shows distances from generated ED to the target feature space for various
feature value combinations in greater detail. Herein, we fix two feature values on
the x- and y-axis. Lighter (darker) colors encode again smaller (larger) distances.
The combination of rmcv and enself exemplarily shows with a bright bottom
left corner, how restrictions of both individual features impact the feasibility of
an EDS with their combination. Also worth mentioning is the combination of
enseef and enself, which shows a clear positive correlation in its bright diagonal.
Regarding R1, as demonstrated by the figures, we can define ranges for each
feature, where generating intended ED is feasible, also in a multi-objective sce-
nario. The data generator covers larger areas of the search space. Furthermore,
we can analyze the search spaces for single and multi-objective generation, and
thus learn about relations between features in a k-dimensional space.

5.3 R2 - Representativeness

For further analysis, we select a qualitative sample of GenGrid, filtering for
event logs with a distance between targets and generated event log feature val-
ues below a threshold θ < 0.1, resulting in 467 event logs. Figure 4 shows the
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Fig. 4: GenGrid benchmark
covers and enriches the fea-
ture space.

Fig. 5: Features’ distribution from 34 real world
datasets compared to 467 event logs generated by
GEDI.

feature space being covered by real event logs compared to logs generated by
GEDI. We conduct a PCA to gain insights into the explained variance. The first
and second principal components yield ≈ 88% of the variance of the feature
space. Furthermore, the illustration shows the convex hull of both, the original
ED and the GenGrid. Not only does GenGrid cover the feature space given by
the real ED, but also covers a larger search space despite the single and pair-
wise feature restrictions. Figure 5 shows the distributions of selected features
extracted from 26 real ED compared to 467 event logs produced by GEDI. The
boxplots show that GEDI is capable of capturing the feature distributions of
real competitors resembling real characteristics. This coverage is of uttermost
importance to use GenGrid to benchmark methods in various realistic scenar-
ios. Nevertheless, feature distributions of GenGrid spread differently than in the
real ED, e.g. for enself, which motivates further feature space exploration be-
yond the current benchmarks’ limits. Hence, answering R2, GEDI can generate
ED containing values w.r.t. given features, which are not provided by existing
benchmark datasets.

5.4 R3 - Benchmarking process mining tasks

This section exemplarily offers a downstream task analysis, here Process Dis-
covery (PD), using generated ED. First, fig. 6 shows distribution comparisons
of evaluation metrics, obtained running three methods – IMF [26], HM [35] and
ILP Miner [37] – on real ED and our GenGrid. Blue boxplots and circles rep-
resent real ED results and orange boxplots and crosses represent GenGrid. On
the one hand, real ED results show a relatively high fitness for all methods.
Adding GenGrid to these results, we observe similar to fig. 5 that GenGrid of-
fers a wider range of metric values than real ED. This validates the merit in the
representativeness of GenGrid over real ED for these features. In contrast, com-
plexity feature values are predominantly lower and narrower spread in GenGrid
than in real ED. Metrics exposing a better performance for GenGrid than real
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Fig. 6: Quality Metrics for PD on 34 real and 467 GenGrid event logs.

ED can be indicators of the limitations of the chosen configuration space. For
our experiments we chose it, considering that higher complexity leads to longer
execution time, as observed in [5]. Particularly, the combinations of precision
or f-score, and HM show that GenGrid tends to have worse precision values
and f-scores than real ED. One reason for this could be HM over-fitting real
ED homogeneous feature values. In cases, where most GenGrid measurements
have higher performance than most real ED ones, we can recognize predomi-
nantly high suitability of the corresponding method for that metric. In any case,
thanks to the reproducibility and intended characteristics of GenGrid, we can
now challenge the current state-of-the-art to discover new insights regarding a
larger, yet unknown space of possible ED.

Next, we explore the relations between features and metrics. As in [6], we
utilize correlation analysis on relations between specific features and PD evalua-
tion metrics, to identify how these relations change with more diverse generated
ED. For this analysis, besides real ED and previously introduced GenGrid, gen-
erated from grid objectives, we use GEDI with real ED feature values as a 7D
multi-objective, to create another collection of generated ED (GenRT). We first
use the Pearson correlation test, which evaluates the likelihood of a pre-existing
linear relationship between two sets of measurements. Figure 7 shows results of
each pair of feature and evaluation metric that yield a p-value equal to or below
0.05 in the Pearson correlation test indicating statistical significance. In fig. 7a
we observe three significant pairs for real ED. Figure 7b shows correlation values
of real ED and GenRT. If real ED were to be perfectly reproduced, the correla-
tion test would deliver the same results for both fig. 7a and fig. 7b. Nonetheless,
GEDI produced ED with the same characteristics in fig. 7b, discovering 39 pairs
of correlated features and metric combinations, consolidating the pairs encoun-
tered in real ED with increased correlation values. The reason GEDI doesn’t
perfectly reproduce the correlation values of real ED and GenRT might be due
to unaccounted degrees of freedom in independent features or restrictions in du-
plication and configuration space. Nevertheless, our results for enve and ense
combined with metrics employing the IMF method, are consistent with findings
in [6]. Moreover, diversity in generated ED results in different relations between
PD metrics and features than those presented by real ED only, suggesting that
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(a) Real ED
-

(b) GenRT using real
targets

(c) GenGrid using grid tar-
gets

Fig. 7: Pearson correlation test for features and PD metrics using p-
value<=0.05

real ED exists beyond these included features. Furthermore, fig. 7c shows 84
pairs of correlation measures between features and evaluation metrics. Correla-
tions for real ED are reinforced in fig. 7c since corresponding pairs are found
again. Interestingly size_ilp and cfc_ilp correlation values decrease with the
GenGrid. A possible reason for this is that ense covers a larger range of values
in GenGrid (cf. fig. 5) introducing corresponding metric values.

As a second test, we use the Kendall-tau [25] correlation test to assess
the relationship between rank and similarity, regardless of linearity. Similar to
the Pearson test, fig. 8 shows correlation values for each pair of features and
evaluation metrics with a p-value <= 0.05, indicating statistical significance.
In fig. 8a, three significant pairs are observed for real ED. The ense with size
combination using the IMF appears in both correlation tests. Figure 8b shows
correlation results for real ED and GenRT, revealing 40 correlated feature-metric
pairs, with 80% (32 pairs) overlapping with the Pearson test in fig. 7b. The
combinations of enve and ense with metrics using the IMF are consistent with
findings in [6]. fig. 8c shows 89 correlated pairs, with 96% (87 pairs) overlapping
with the Pearson test in fig. 7c. Correlations for real ED are reinforced for two
pairs in fig. 8c as they reappear. Notably, the enve with precision combination
using the HM is lost between real and generated ED, possibly due to over-fitting,
consistent with findings in fig. 6.

6 Discussion and Conclusion

Machine learning models exhibit bias towards characteristics present in the in-
put data, and thus its (meta-)features. We actively address and mitigate these
biases through careful data generation to ensure intentional and diverse event
outcomes. For that, we propose a novel framework for generating event data
with intentional features, called GEDI. Our framework systematically explores
a discretized feature space. In the next step, we apply Bayesian Optimization to
obtain optimized hyperparameters for any data-generating module (here: pro-
cess tree generator). The evaluation shows that the generated ED resembles the
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(a) Real ED
-

(b) GenRT using real
targets

(c) GenGrid using grid tar-
gets

Fig. 8: Kendalltau correlation test for features and PD metrics using p-
value<=0.05

characteristics of real-world ED and covers a larger area in feature space. Our
benchmark analysis shows evaluation results of process discovery models on gen-
erated data compared to real-world data. GEDI provides a deep understanding
of how feature sets relate to evaluation metrics, allowing the community to cre-
ate methods tailored for specific downstream tasks. By defining the scope of
GEDI benchmarks—including features, metrics, and candidates for a task—we
can find approaches that generally perform well or excel in specific areas. Addi-
tionally, GEDI can generate event data similar to real-world cases and comply
with GDPR.

GEDI for training purposes. GEDI enables to pre-train models on datasets
with varying characteristics, the ML engineer can draw on well-trained reserves,
which do generalize much better than models being solely trained on data which
cover only a specific area in the meta-feature space, see fig. 4. GEDI, thus, rep-
resents an extension of data augmentation or simulation of training data. Our
evaluation emphasizes the point that process discovery techniques and specifi-
cally their metrics are interrelated when training models on existing benchmark
datasets and when trained on an enriched data input space (see fig. 7 and fig. 8).
Through GEDI the community gains the ability to craft methods specially de-
signed for various downstream tasks.

GEDI for testing purposes. Although GEDI can generate representative ED
in terms of features, i.e. it can reproduce desired features from ED (see fig. 3),
reproducing benchmark results for PD via selected meta-features remains an
open direction. Given a representative set of features for PD and knowledge
about such feature values for external valid test data, e.g. from an industry
partner, unable to publish their data, GEDI could reproduce the same behavior
in PD evaluation metrics. GEDI enables and opens new exciting directions for
reproducible benchmarking to mine the potential behind feature and evaluation
metrics relations for various downstream tasks.
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Limitations arise from the crucial role of feature selection in defining the frame-
work’s robustness. This duality serves as both a strength and a weakness. Users
benefit from the ability to specify criteria precisely, but an arbitrary feature se-
lection introduces multiple challenges. In scenarios where ED is generated based
on all possible combinations of Eq. 11, convergence of the Hyperparameter Op-
timization (cf. Section 3.3) becomes negatively correlated with the number of
optimizing features, as complexity escalates and a larger feature set may intro-
duce combinations leading to unfeasible solutions. Limiting the Hyperparameter
Optimization by a maximal number of epochs may interrupt convergence, yield-
ing unfeasible solutions for specific configurations.

In future work, we plan to investigate a broader set of features, explore other
parametrizable ED generators, and examine generated event logs on a wider
range of benchmarks, as downstream tasks. Additionally, GEDI is extensible to
integrating additional information where statistical descriptors for attributive
parameters formulate further side constraints on generated event log data. Fur-
thermore, adapting to human-in-the-loop approaches could prove promising for
further GEDI applications.
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