25.04.2022
Two papers at CHI 2022
Conference on Human Factors in Computing Systems (CHI 2022). New Orleans, LA, USA, 30.04.2022–05.05.2022
We are happy to announce that MCML researchers are represented with two papers at CHI 2022:
‘It Is Not Always Discovery Time’: Four Pragmatic Approaches in Designing AI Systems.
CHI 2022 - Conference on Human Factors in Computing Systems. New Orleans, LA, USA, Apr 30-May 05, 2022. DOI.
Abstract
While systems that use Artificial Intelligence (AI) are increasingly becoming part of everyday technology use, we do not fully understand how AI changes design processes. A structured understanding of how designers work with AI is needed to improve the design process and educate future designers. To that end, we conducted interviews with designers who participated in projects which used AI. While past work focused on AI systems created by experienced designers, we focus on the perspectives of a diverse sample of interaction designers. Our results show that the design process of an interactive system is affected when AI is integrated and that design teams adapt their processes to accommodate AI. Based on our data, we contribute four approaches adopted by interaction designers working with AI: a priori, post-hoc, model-centric, and competence-centric. Our work contributes a pragmatic account of how design processes for AI systems are enacted.
MCML Authors
Automating Contextual Privacy Policies: Design and Evaluation of a Production Tool for Digital Consumer Privacy Awareness.
CHI 2022 - Conference on Human Factors in Computing Systems. New Orleans, LA, USA, Apr 30-May 05, 2022. DOI.
Abstract
Users avoid engaging with privacy policies because they are lengthy and complex, making it challenging to retrieve relevant information. In response, research proposed contextual privacy policies (CPPs) that embed relevant privacy information directly into their affiliated contexts. To date, CPPs are limited to concept showcases. This work evolves CPPs into a production tool that automatically extracts and displays concise policy information. We first evaluated the technical functionality on the US’s 500 most visited websites with 59 participants. Based on our results, we further revised the tool to deploy it in the wild with 11 participants over ten days. We found that our tool is effective at embedding CPP information on websites. Moreover, we found that the tool’s usage led to more reflective privacy behavior, making CPPs powerful in helping users understand the consequences of their online activities. We contribute design implications around CPP presentation to inform future systems design.
MCML Authors
25.04.2022
Related
06.11.2024
20 papers at EMNLP 2024
Conference on Empirical Methods in Natural Language Processing (EMNLP 2024). Miami, FL, USA, 12.11.2024 - 16.11.2024
18.10.2024
Three papers at ECAI 2024
27th European Conference on Artificial Intelligence (ECAI 2024). Santiago de Compostela, Spain, 19.10.2024 - 24.10.2024
01.10.2024
16 papers at MICCAI 2024
27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024). Marrakesh, Morocco, 06.10.2024 - 10.10.2024
26.09.2024
18 papers at ECCV 2024
18th European Conference on Computer Vision (ECCV 2024). Milano, Italy, 29.09.2024 - 04.10.2024
04.09.2024
Nine papers at ECML-PKDD 2024
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Database (ECML-PKDD 2024). Vilnius, Lithuania, 09.09.2024 - 13.09.2024